Continued fractions using a Laguerre digraph interpretation of the Foata-Zeilberger bijection and its variants

Bishal Deb (he/him)
University College London
September 4, 2023
International Conference on Enumerative Combinatorics and Applications 2023

Cycle classification

For a permutation σ, compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

Cycle classification

For a permutation σ, compare each i with $\sigma(i)$ and $\sigma^{-1}(i)$:

- cycle valley $\sigma^{-1}(i)>i<\sigma(i)$
- cycle peaks $\sigma^{-1}(i)<i>\sigma(i)$
- cycle double rise $\sigma^{-1}(i)<i<\sigma(i)$
- cycle double fall $\sigma^{-1}(i)>i>\sigma(i)$
- fixed point $i=\sigma(i)=\sigma^{-1}(i)$

Record classification

Consider σ as $\sigma(1) \sigma(2) \ldots \sigma(n)$:

Record classification

Consider σ as $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima

Consider σ as $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each i is one of the following four types:

Consider σ as $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each i is one of the following four types:
- rar - record-antirecord
- erec - exclusive record
- earec - exclusive antirecord
- nrar - neither record-antirecord

Consider σ as $\sigma(1) \sigma(2) \ldots \sigma(n)$:

- i is record if for every $j<i$ we have $\sigma(j)<\sigma(i)$ left-to-right-maxima
- i is antirecord if for every $i>j$ we have $\sigma(i)<\sigma(j)$ right-to-left-minima
Each i is one of the following four types:
- ran - record-antirecord

- erect - exclusive record

- earec - exclusive antirecord \quad /\$/4,
- near - neither record-antirecord \#

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

Record-and-cycle classification

Each i is one of the following ten (not 20) types:

	cpeak	cval	cdrise	cdfall	fix
erec earec rar	eareccpeak	ereccval	ereccdrise	eareccdfall nrcdfall	rar nrfix

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right) t^{n} \\
= & \frac{1}{1-z \cdot t-\frac{x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+w\right) \cdot t-\frac{\left(x_{1}+u_{1}\right)\left(y_{1}+v_{1}\right) \cdot t^{2}}{1-\left(\left(x_{2}+u_{2}\right)+\left(y_{2}+v_{2}\right)+w\right) \cdot t-\frac{\left(x_{1}+2 u_{1}\right)\left(y_{1}+2 v_{1}\right) \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Continued fractions counting permutation statistics

Consider 10-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)}
\end{aligned}
$$

Theorem (Sokal-Zeng (2022) First J-fraction for permutations)

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right) t^{n} \\
= & \frac{1}{1-z \cdot t-\frac{x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+w\right) \cdot t-\frac{\left(x_{1}+u_{1}\right)\left(y_{1}+v_{1}\right) \cdot t^{2}}{1-\left(\left(x_{2}+u_{2}\right)+\left(y_{2}+v_{2}\right)+w\right) \cdot t-\frac{\left(x_{1}+2 u_{1}\right)\left(y_{1}+2 v_{1}\right) \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Proof uses the Foata-Zeilberger bijection (1990)

Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text {eareccpeak }(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!

Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\text {eareccpeak }(\sigma)} x_{2}^{\text {eareccdfall }(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction! But can obtain J-fraction by specialising $y_{1}=v_{1}$:

Can we count cycles as well?

Consider 11-variable polynomials

$$
\begin{aligned}
& P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, v_{1}, v_{2}, w, z\right)= \\
& \quad \sum_{\sigma \in \mathfrak{S}_{n}} x_{1}^{\operatorname{eareccpeak}(\sigma)} x_{2}^{\operatorname{eareccdfall}(\sigma)} y_{1}^{\operatorname{ereccval}(\sigma)} y_{2}^{\operatorname{ereccdrise}(\sigma)} z^{\operatorname{rar}(\sigma)} \times \\
& \quad u_{1}^{\operatorname{nrcpeak}(\sigma)} u_{2}^{\operatorname{nrcdfall}(\sigma)} v_{1}^{\operatorname{nrcval}(\sigma)} v_{2}^{\operatorname{nrcdrise}(\sigma)} w^{\operatorname{nrfix}(\sigma)} \lambda^{\operatorname{cyc}(\sigma)}
\end{aligned}
$$

No nice J-fraction!
But can obtain J-fraction by specialising $y_{1}=v_{1}$:

Conjecture (Sokal-Zeng (2022))

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}\left(x_{1}, x_{2}, y_{1}, y_{2}, u_{1}, u_{2}, y_{1}, v_{2}, w, z, \lambda\right) t^{n} \\
&=\frac{1}{1-\lambda z \cdot t-\frac{\lambda x_{1} y_{1} \cdot t^{2}}{1-\left(x_{2}+y_{2}+\lambda w\right) \cdot t-\frac{(\lambda+1)\left(x_{1}+u_{1}\right) y_{1} \cdot t^{2}}{1-\left(\left(x_{2}+v_{2}\right)+\left(y_{2}+v_{2}\right)+\lambda w\right) \cdot t-\frac{(\lambda+2)\left(x_{1}+2 u_{1}\right) y_{1} \cdot t^{2}}{1-\ddots}}}}
\end{aligned}
$$

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Used Biane bijection (1993).

Sokal-Zeng conjectured a continued fraction for 11 variable polynomials involving one specialisation $y_{1}=v_{1}$.

They could only prove with two specialisations $y_{1}=v_{1}$ and $y_{2}=v_{2}$ Second J-fraction for permutations

Used Biane bijection (1993).
Twist in story:
Can prove their full conjecture using Foata-Zeilberger bijection
We can count cycles in the Foata-Zeilberger bijection

$$
\text { excedance indices } F=\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval }
$$

$$
\begin{aligned}
& \text { excedance indices } F=\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
& \text { excedance values } F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak }
\end{aligned}
$$

$$
\begin{aligned}
\text { excedance indices } F & =\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
\text { excedance values } F^{\prime} & =\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak } \\
\text { antiexcedance indices } G & =\{i \in \sigma: \sigma(i)<i\}=\text { Cdfall } \cup \text { Cpeak }
\end{aligned}
$$

$$
\begin{aligned}
\text { excedance indices } F & =\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
\text { excedance values } F^{\prime} & =\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak } \\
\text { antiexcedance indices } G & =\{i \in \sigma: \sigma(i)<i\}=\text { Cdfall } \cup \text { Cpeak } \\
\text { antiexcedance values } G^{\prime} & =\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=\text { Cdfall } \cup \text { Cval }
\end{aligned}
$$

excedance indices $F=\{i \in \sigma: \sigma(i)>i\}=$ Cdrise \cup Cval excedance values $F^{\prime}=\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=$ Cdrise \cup Cpeak antiexcedance indices $G=\{i \in \sigma: \sigma(i)<i\}=$ Cdfall \cup Cpeak antiexcedance values $G^{\prime}=\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=$ Cdfall \cup Cval fixed points $H=\{i \in \sigma: i=\sigma(i)\}=$ Fix

$$
\begin{aligned}
\text { excedance indices } F & =\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
\text { excedance values } F^{\prime} & =\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak } \\
\text { antiexcedance indices } G & =\{i \in \sigma: \sigma(i)<i\}=\text { Cdfall } \cup \text { Cpeak } \\
\text { antiexcedance values } G^{\prime} & =\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=\text { Cdfall } \cup \text { Cval } \\
\text { fixed points } H & =\{i \in \sigma: i=\sigma(i)\}=\text { Fix }
\end{aligned}
$$

A permutation can be fully described the following data:

- Sets $F, F^{\prime}, G, G^{\prime}, H$

$$
\begin{aligned}
\text { excedance indices } F & =\{i \in \sigma: \sigma(i)>i\}=\text { Cdrise } \cup \text { Cval } \\
\text { excedance values } F^{\prime} & =\left\{i \in \sigma: i>\sigma^{-1}(i)\right\}=\text { Cdrise } \cup \text { Cpeak } \\
\text { antiexcedance indices } G & =\{i \in \sigma: \sigma(i)<i\}=\text { Cdfall } \cup \text { Cpeak } \\
\text { antiexcedance values } G^{\prime} & =\left\{i \in \sigma: i<\sigma^{-1}(i)\right\}=\text { Cdfall } \cup \text { Cval } \\
\text { fixed points } H & =\{i \in \sigma: i=\sigma(i)\}=\text { Fix }
\end{aligned}
$$

A permutation can be fully described the following data:

- Sets $F, F^{\prime}, G, G^{\prime}, H$
- $\left.\sigma\right|_{F}: F \rightarrow F^{\prime}$
- $\left.\sigma\right|_{G}: G \rightarrow G^{\prime}$

Foata-Zeilberger bijection

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

Foata-Zeilberger bijection

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)

Foata-Zeilberger bijection

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
Correspond to $F, F^{\prime}, G, G^{\prime}, H$

Foata-Zeilberger bijection

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
Correspond to $F, F^{\prime}, G, G^{\prime}, H$
- $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are labels on the steps of the Motzkin paths

Foata-Zeilberger bijection

Foata-Zeilberger bijection:

$$
\sigma \mapsto(\omega, \xi)
$$

where

- ω is a Motzkin path, where the level steps come in three different colours (red, blue, green)
Correspond to $F, F^{\prime}, G, G^{\prime}, H$
- $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$ are labels on the steps of the Motzkin paths Correspond to $\left.\sigma\right|_{F}: F \rightarrow F^{\prime}$ and $\left.\sigma\right|_{G}: G \rightarrow G^{\prime}$

Description of $\sigma \rightarrow \omega$

- If i is a cycle valley, step i is \nearrow
- If i is a cycle peak, step i is \downarrow
- If i is a cycle double rise, cycle double fall or fixed, step i is \rightarrow, \rightarrow or \rightarrow respectively.

Description of labels $\sigma \rightarrow \xi$

For $i \in[n]$

$$
\xi_{i}=\left\{\begin{array}{lll}
\#\{j: j<i \text { and } \sigma(j)>\sigma(i)\} & \text { if } \sigma(i)>i & \text { if } i \in \text { Cval } \cup \text { Cdrise } \\
\#\{j: j>i \text { and } \sigma(j)<\sigma(i)\} & \text { if } \sigma(i)<i & \text { if } i \in \text { Cpeak } \cup \text { Cdfall } \\
0 & \text { if } \sigma(i)=i & \text { if } i \in \text { Fix }
\end{array}\right.
$$

An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\} \quad$ - Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\} \quad$ - Cpeak $=\{7,9\} \quad$ - Cdrise $=\{5\}$ Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

The Motzkin path ω is

An example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.

- Cval $=\{1,3\}$
- Cpeak $=\{7,9\}$
- Cdrise $=\{5\}$
Cdfall $=\{2,6,8\}$
- Fix $=\{4\}$

The Motzkin path ω is

The labels ξ and the sets $F, F^{\prime}, G, G^{\prime}$ are:

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1 .

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1 .

Example:

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1 .

Example:

Connected components

- Directed cycle
- Directed paths

Laguerre digraph

Definition

A Laguerre digraph of size n is a directed graph on vertex set $\{1, \ldots, n\}$ where each vertex has indegree 0 or 1 and outdegree 0 or 1 .

Example:

Connected components

- Directed cycle
- Directed paths

Generalise permutations

"History" of Foata-Zeilberger bijection

Start with all n vertices and no edges

"History" of Foata-Zeilberger bijection

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$

"History" of Foata-Zeilberger bijection

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Stage (c): $i \in F$ (excedances) in decreasing order

"History" of Foata-Zeilberger bijection

Start with all n vertices and no edges
At each stage insert edges $i \rightarrow \sigma(i)$ in the following order:
Stage (a): $i \in H$ (fixed points) in increasing order
Stage (b): $i \in G$ (antiexcedances) in increasing order
Stage (c): $i \in F$ (excedances) in decreasing order
This order is suggested by the inverse bijection and the inversion tables

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

1	7	3	5	
\bullet	\bullet	\bullet	\bullet	
\bullet	\bullet	\bullet	\bullet	\bullet
2	6	8	9	4

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (a): H in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (a): H in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (b): G in increasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (c): F in decreasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (c): F in decreasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (c): F in decreasing order

History with an example

Let $\sigma=715492638=(1762)(3598)(4) \in \mathfrak{S}_{9}$.
$H=\{4\}$

$i \in F$	1	3	5
$\sigma(i) \in F^{\prime}$	7	5	9
ξ_{i}	0	1	0

$i \in G$	2	6	7	8	9
$\sigma(i) \in G^{\prime}$	1	2	6	3	8
ξ_{i}	0	0	1	0	0

Stage (c): F in decreasing order

Story continues

This resolves the Sokal-Zeng conjecture (2022) for permutations

Story continues

This resolves the Sokal-Zeng conjecture (2022) for permutations
Resolved a 4-variable conjectured continued fraction due to Randrianarivony-Zeng (1996) for Genocchi numbers

This resolves the Sokal-Zeng conjecture (2022) for permutations
Resolved a 4-variable conjectured continued fraction due to Randrianarivony-Zeng (1996) for Genocchi numbers

Similar to Sokal-Zeng, have generalised these continued fractions to families of infinitely many variables

Thank you

