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Stieltjes-type continued fraction (S-fraction):

1

1 − α1t

1 − α2t

1 − ⋱

Also called regular C-fraction outside of combinatorial literature.
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want to obtain
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Linear α

Catalan numbers:
α’s are 1,1,1,1, . . .

n! :
α’s are 1,1,2,2,3,3, . . .

Bell numbers (number of set partitions):
α’s are 1,1,1,2,1,3,1,4 . . .

(2n − 1)!! = 1 ⋅ 3⋯(2n − 1) :
α’s are 1,2,3,4,5, . . .
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Quadratic α

Tangent numbers A000182

Secant numbers A000364

Genocchi numbers A110501

Median Genocchi numbers A005439

Even Springer numbers A000281
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Tangent and secant numbers

Maclaurin series of sec t + tan t

sec t + tan t =
∞
∑
n=0

En
tn

n!

E2n - Secant numbers
α’s are 12,22,32,42,52, . . .

E2n+1 - Tangent numbers
α’s are 1 ⋅ 2,2 ⋅ 3,3 ⋅ 4,4 ⋅ 5,5 ⋅ 6, . . .
Classically expressed using Borel summation
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Genocchi numbers

Genocchi numbers

t tan( t
2
) =

∞
∑
n=0

gn
t2n+2

(2n + 2)!

The first few numbers are 1,1,3,17,155,2073, . . .

gn = 4−n(n + 1)E2n+1

gn = (−1)n+1 2(1 − 22n+2)B2n+2

α’s are 1 ⋅ 1,1 ⋅ 2, 2 ⋅ 2,2 ⋅ 3, 3 ⋅ 3,3 ⋅ 4 . . .
(Viennot 1981)
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Median Genocchi numbers

hn =
n−1

∑
i=0

(−1)i( n

2i + 1
)gn−1−i

The first few numbers are 1,1,2,8,56,608,9440, . . .

No nice closed form known for exponential generating function

α’s are 12,12, 22,22, 32,32 . . .
(Viennot 1981)
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Combinatorial Interpretation for Genocchi and Genocchi
medians

Genocchi numbers gn are counted by

#{σ ∈S2n∣2i > σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-e-semiderangements

Median Genocchi numbers hn are counted by

#{σ ∈S2n∣2i > σ(2i) and 2i − 1 < σ(2i − 1)}

D-derangements

Also hn+1 counted by

#{σ ∈S2n∣2i ≥ σ(2i) and 2i − 1 ≤ σ(2i − 1)}

D-permutations or Dumont-like permutations (Lazar and Wachs 2019)
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Example of a D-permutation

13 45



Non-example
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Combinatorics and continued fractions: The permutations
story

Jacobi-type continued fraction for n!:

1 + 1!t + 2!t2 + 3!t3 + 4!t4 + . . . = 1

1 − 1 ⋅ t − 1 ⋅ t2

1 − 3 ⋅ t − 4 ⋅ t2

1 − 5 ⋅ t − 9 ⋅ t2

1 − ⋱

Also called associated C-fraction outside of combinatorial literature.
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Cycle classification

For a permutation σ, compare each i with σ(i) and σ−1(i):

cycle valley σ−1(i) > i < σ(i)
cycle peaks σ−1(i) < i > σ(i)
cycle double rise σ−1(i) < i < σ(i)
cycle double fall σ−1(i) > i > σ(i)
fixed point i = σ(i) = σ−1(i)
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Consider 5-variable polynomials

Pn(x1, x2, y1, y2,w) = ∑
σ∈Sn

x
cpeak(σ)
1 x

cdfall(σ)
2 y

cval(σ)
1 y

cdrise(σ)
2 zfix(σ)

J-fraction:

∞
∑
n=0

Pn(x1, x2, y1, y2,w)tn

= 1

1 − z ⋅ t − x1y1 ⋅ t2

1 − (x2 + y2 + z) ⋅ t −
4x1y1 ⋅ t2

1 − (2x2 + 2y2 + z) ⋅ t −
9x1y1 ⋅ t2

1 − ⋱
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Record classification

Consider σ as a word σ(1)σ(2) . . . σ(n):

i is record if for every j < i we have σ(j) < σ(i)
left-to-right-maxima

i is antirecord if for every i > j we have σ(i) < σ(j)
right-to-left-minima

Each i is one of the following four types:

rar - record-antirecord

erec - exclusive record

earec - exclusive antirecord

nrar - neither record-antirecord

19 45
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Record-and-cycle classification

Each i is one of the following ten (not 20) types:

ereccval

nrcval

eareccpeak

nrcpeak

ereccdrise

nrcdrise

eareccdfall

nrcdfall

rar

nrfix
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Consider 10-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

Nice J-fraction:

Theorem (First J-fraction of Sokal–Zeng (2022) for permutations)

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2, z,w)tn

= 1

1 − z ⋅ t − x1 y1 ⋅ t2

1 − (x2 + y2 +w) ⋅ t − (x1 + u1) (y1 + v1) ⋅ t2

1 − ((x2 + v2) + (y2 + v2) +w) ⋅ t − (x1 + 2u1) (y1 + 2v1) ⋅ t2

1 − ⋱
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They then generalise this to 18 variables

and five families of infinitely
many variables!

Similar results were also found by Blitvić-Steingŕımsson (2021) at around
the same time

Randrianarivony in a little-known paper had actually interpreted almost
all of the variables for different statistics in 1998!!!
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Counting cycles

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)λcyc(σ)

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:

Theorem (D. (2023), Conjectured by Sokal–Zeng (2022))

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, y1, v2,w, z, λ)tn

= 1

1 − λz ⋅ t − λx1 y1 ⋅ t2

1 − (x2 + y2 + λw) ⋅ t − (λ + 1)(x1 + u1)y1 ⋅ t2

1 − ((x2 + v2) + (y2 + v2) + λw) ⋅ t − (λ + 2)(x1 + 2u1)y1 ⋅ t2

1 − ⋱

23 45



Counting cycles

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)λcyc(σ)

No nice J-fraction!

But can obtain J-fraction by specialising y1 = v1:

Theorem (D. (2023), Conjectured by Sokal–Zeng (2022))

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, y1, v2,w, z, λ)tn

= 1

1 − λz ⋅ t − λx1 y1 ⋅ t2

1 − (x2 + y2 + λw) ⋅ t − (λ + 1)(x1 + u1)y1 ⋅ t2

1 − ((x2 + v2) + (y2 + v2) + λw) ⋅ t − (λ + 2)(x1 + 2u1)y1 ⋅ t2

1 − ⋱

23 45



Counting cycles

Consider 11-variable polynomials

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u
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2 v
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1 v
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2 wnrfix(σ)λcyc(σ)

No nice J-fraction!
But can obtain J-fraction by specialising y1 = v1:
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The D-permutations story

Consider 10-variable polynomial

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈D2n

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

Thron-type continued fraction

∞
∑
n=0

Pnt
n = 1

1 − δ0t −
α1t

1 − α2t

1 − α3t

⋱
where

δ1 = z2

α2k−1 = [x1 + (k − 1)u1] ⋅ [y1 + (k − 1)v1]
α2k = [x2 + (k − 1)u2 +w] ⋅ [y2 + (k − 1)v2 +w].

Can do better!!
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The D-permutations story

Separate fixed points by parity

Theorem (D.-Sokal ’22 (arxiv))

∞
∑
n=0

Pnt
n = 1

1 − δ0t −
α1t

1 − α2t

1 − α3t

⋱

where
δ1 = zezo

α2k−1 = [x1 + (k − 1)u1] ⋅ [y1 + (k − 1)v1]

α2k = [x2 + (k − 1)u2 +we] ⋅ [y2 + (k − 1) + v2 +wo].
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D-e-semiderangements

⊆ ⊆

D-cycles
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
gn−1

⊆

D-derangements
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

hn

⊆ ⊆

D-o-semiderangements
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

gn

D-permutations
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

hn+1

We can also count cycles [D.–Sokal ’22, D. ’23]
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1 Introduction
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3 The permutations story

4 The D-permutations story

5 The cycle-alternating permutations story
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Combinatorial Interpretation for Secant numbers

Secant numbers E2n are counted by

cycle-alternating permutations
σ ∈S2n where each i ∈ [2n]

- either cycle valley (σ−1(i) > i < σ(i))

- or cycle peak (σ−1(i) < i > σ(i))
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The cycle-alternating permutations story

Pn(x1, x2, y1, y2, u1, u2, v1, v2,w, z) =

∑
σ∈Sn

x
eareccpeak(σ)
1 x

eareccdfall(σ)
2 y

ereccval(σ)
1 y

ereccdrise(σ)
2 zrar(σ) ×

u
nrcpeak(σ)
1 u

nrcdfall(σ)
2 v

nrcval(σ)
1 v

nrcdrise(σ)
2 wnrfix(σ)

Theorem (First J-fraction of Sokal–Zeng (2022) for permutations)

∞
∑
n=0

Pn(x1, x2, y1, y2, u1, u2, v1, v2, z,w)tn

= 1

1 − z ⋅ t − x1 y1 ⋅ t2

1 − (x2 + y2 +w) ⋅ t − (x1 + u1) (y1 + v1) ⋅ t2

1 − ((x2 + v2) + (y2 + v2) +w) ⋅ t − (x1 + 2u1) (y1 + 2v1) ⋅ t2

1 − ⋱

Set x2 = y2 = u2 = v2 = w = z = 0
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The cycle-alternating permutations story

Consider 4-variable polynomials

P2n(x, y, u, v) = ∑
σ∈Sca

2n

xeareccpeak(σ)yereccval(σ)unrcpeak(σ)vnrcval(σ)

Theorem (First J-fraction of Sokal–Zeng (2022) for cycle-alternating
permutations)

∞
∑
n=0

P2n(x, y, u, v)tn

= 1

1 − x y ⋅ t

1 − (x + u) (y + v) ⋅ t

1 − (x + 2u) (y + 2v) ⋅ t
1 − ⋱

Can do better
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The cycle-alternating permutations story

Separate by parity

P2n(xe, xo, ye, yo, ue, uo, ve, vo)
= ∑

σ∈Sca
2n

xeareccpeakeven(σ)
e xeareccpeakodd(σ)

o yereccvaleven(σ)
e yereccvalodd(σ)

o ×

unrcpeakeven(σ)
e unrcpeakodd(σ)

o vnrcvaleven(σ)
e vnrcvalodd(σ)

o

Theorem (D.–Sokal ’23 (arxiv))

∞
∑
n=0

P2nt
n = 1

1 − xe yo ⋅ t

1 − (xo + uo) (ye + ve) ⋅ t

1 − (xe + 2ue) (yo + 2vo) ⋅ t

1 − (xo + 3uo) (ye + 3ve) ⋅ t
⋱

Special case of more general continued fraction of Sokal–Zeng involving 2
infinite families
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Counting of cycles

Consider 9-variable polynomials

P2n(xe, xo, ye, yo, ue, uo, ve, vo)
= ∑

σ∈Sca
2n

xeareccpeakeven(σ)
e xeareccpeakodd(σ)

o yereccvaleven(σ)
e yereccvalodd(σ)

o ×

unrcpeakeven(σ)
e unrcpeakodd(σ)

o vnrcvaleven(σ)
e vnrcvalodd(σ)

o λcyc(σ)

Need to set ye = ve, yo = vo

Theorem (D.–Sokal ’23 (arxiv))

∞
∑
n=0

P2nt
n = 1

1 − λxe yo ⋅ t

1 − (λ + 1)(xo + uo)ye ⋅ t

1 − (λ + 2)(xe + 2ue)yo ⋅ t

1 − (λ + 3)(xo + 3uo)ye ⋅ t
⋱
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Alternating cycles
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E2n−1

⊆ Cycle-alternating permutations
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

E2n
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Jacobian Elliptic Function

u = F (φ, k) = ∫
φ

0

dt√
1 − k2 sin2 t

Jacobian amplitude

am(u, k) = φ = F −1(u, k)

Jacobian elliptic functions

sn(u, k) = sin am(u, k)

cn(u, k) = cos am(u, k)

Combinatorial interpretation due to Dumont (1979,1980). He introduced
Schett polynomials.
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Series expansion

sn(u, k) =
∞
∑
n=0

(−1)(n−1)/2E2n+1(k)
u2n+1

(2n + 1)!

cn(u, k) =
∞
∑
n=0

(−1)n/2E2n(k)
u2n

(2n)!

∞
∑
n=0

E2n(k)tn = 1

1 − t

1 − 22k2t

1 − 32t

1 − 42k2t

1 − ⋱
[Stieltjes, 1889]
Our continued fraction also generalises this
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Structure

1 Introduction

2 Tangent, Secant, Genocchi, Genocchi medians

3 The permutations story

4 The D-permutations story

5 The cycle-alternating permutations story

6 Jacobi–Rogers matrix
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Jacobi-Rogers matrix

Consider the J-fraction

1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱

Define lower-triangular matrix J where

Jn,n = 1

Jn,k = Jn−1,k−1 + γkJn−1,k + βk+1Jn−1,k+1

Also known as Stieltjes table/tableau
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If ∞
∑
n=0

antn = 1

1 − γ0t −
β1t

2

1 − γ1t −
β2t

2

1 − ⋱
then

Jn,0 = an

Question: If J-fraction for an is known, combinatorially understand
matrix J
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When an = n!,
∞
∑
n=0

antn = 1

1 − t − 1t2

1 − 3t − 4t2

1 − ⋱

Jn,k = (n
k
)n!
k!

These count Laguerre digraphs with k paths
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Laguerre digraph

Laguerre digraph is a labelled digraph where each vertex has in and
out-degree 0 or 1

Each connected component is a cycle or a path

No paths - permutation

Number of Laguerre digraphs on n vertices with k elements -

Jn,k = (n
k
)n!
k!

Can extend permutation statistics to Laguerre digraphs [D.–Sokal
(ongoing)]
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i can be classified as:

Peak

Valley

Double ascent

Double descent

Loop

Alternating Laguerre digraph - Laguerre digraphs where each vertex is
either a peak or a valley

Interpret Jacobi-Rogers matrix for secant numbers E2n [D.–Sokal ’23]
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Question

We have a combinatorial interpretation for

1

1 − 1 ⋅ t

1 − 1 ⋅ t

1 − 2 ⋅ t

1 − 2 ⋅ t
1 − ⋱

i.e. α’s given by 1,1,2,2,3,3,4,4, . . .. We can also read off statistics
from this by putting in variables.

Question: Combinatorially understand α’s 1k,1k,2k,2k,3k,3k, . . .
”multivariately”

k = 1 quasi-linear case: n!

k = 2 quasi-quadratic case: Median Genocchi numbers

k = 3 quasi-cubic case: Not on OEIS!!!
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